

NumberWonders Prime Activity Kit v1

Pilot release - direct download edition

This printable kit helps grades 5-9 learners master prime/composite logic, divisibility tests, factor trees, and reasoning through puzzle-style activities.

Estimated Time: 10 sessions x 30-45 min

Format: Printable worksheet + challenge board pack

Audience: Middle school classrooms, clubs, homeschool

License: One classroom or one household

Primes

Divisibility

Factorization

Reasoning

Answer key included

Teacher Quick Start

1. Warm up with worksheet mini-drills (10 minutes).
2. Run one core worksheet in pairs or small groups (20-25 minutes).
3. Discuss one strategy per team and compare methods (8-10 minutes).
4. Use challenge board tasks as extension or homework.

Classroom tip: Use a visible “prime wall” where teams post numbers they proved prime and the method used.

Worksheet Index

#	Topic	Target Skill
1	Prime or Composite Quick Check	Classification and reasoning
2	Divisibility Tests Lab	Rules for 2,3,5,9,10,11
3	Sieve Sprint	Prime detection by elimination
4	Factor Tree Workshop	Prime factorization
5	Greatest Common Factor	GCF with factorizations
6	Least Common Multiple	LCM with prime powers
7	Prime Gap Explorer	Pattern spotting
8	Mersenne and Twin Primes	Special prime families
9	Cryptic Factor Puzzles	Reverse reasoning
10	Prime Detective Challenge Board	Mixed application

Worksheet 1: Prime or Composite Quick Check

Mark each number as Prime (P) or Composite (C), then justify 3 choices.

1) 2 __

2) 9 __

3) 17 __

4) 21 __

5) 29 __

6) 31 __

7) 33 __

8) 37 __

9) 49 __

10) 51 __

Worksheet 2: Divisibility Tests Lab

For each number, list all tests that prove divisibility (2,3,5,9,10,11).

1) 120: _____

2) 231: _____

3) 495: _____

4) 693: _____

5) 1,210: _____

6) 1,001: _____

7) 2,970: _____

8) 4,356: _____

Worksheet 3: Sieve Sprint

Use a sieve to mark all primes from 2 to 100. Then answer:

1) How many primes are between 1 and 100? _____

2) List the primes between 50 and 80: _____

3) Which composite numbers survived until the last elimination step? _____

4) Why can you stop checking divisors after \sqrt{n} ? _____

Worksheet 4: Factor Tree Workshop

Find prime factorization and write in exponent form.

1) $84 =$ _____

2) $126 =$ _____

3) $180 =$ _____

4) $252 =$ _____

5) $432 =$ _____

6) $693 =$ _____

7) $945 =$ _____

8) $1,008 =$ _____

Worksheet 5: Greatest Common Factor

Compute GCF using prime factorization.

1) $\text{GCF}(18, 24) =$ _____

2) $\text{GCF}(45, 75) =$ _____

3) $\text{GCF}(84, 126) =$ _____

4) $\text{GCF}(96, 144) =$ _____

5) $\text{GCF}(210, 315) =$ _____

6) $\text{GCF}(256, 640) =$ _____

Worksheet 6: Least Common Multiple

Compute LCM using prime powers.

1) $\text{LCM}(6, 8) =$ _____

2) $\text{LCM}(12, 18) =$ _____

3) $\text{LCM}(15, 20) =$ _____

4) $\text{LCM}(21, 28) =$ _____

5) $\text{LCM}(24, 36) =$ _____

6) $\text{LCM}(45, 60) =$ _____

Worksheet 7: Prime Gap Explorer

Find prime gaps and describe patterns.

1) Gap between 11 and 13 = _____

2) Gap between 23 and 29 = _____

3) Gap between 47 and 53 = _____

4) Gap between 89 and 97 = _____

5) In the range 2..100, what is the largest prime gap? _____

6) Can prime gaps be odd? Explain. _____

Worksheet 8: Mersenne and Twin Primes

Classify each statement as True/False.

- 1) If $2^p - 1$ is prime, then p is prime. _____
- 2) (11, 13) is a twin prime pair. _____
- 3) (23, 25) is a twin prime pair. _____
- 4) 31 is a Mersenne prime. _____
- 5) 63 is a Mersenne number. _____
- 6) Every Mersenne number is prime. _____

Worksheet 9: Cryptic Factor Puzzles

Use clues to find the hidden number.

1. I am composite, less than 50, and my prime factors are 2, 3, and 5. Who am I?
2. I am divisible by 9 and 11, between 80 and 120. Who am I?
3. I have exactly three prime factors: 2^2 , 3, and 7. Who am I?
4. I am the smallest odd composite with two distinct prime factors. Who am I?

Worksheet 10: Prime Detective Challenge Board

Solve any 8 tasks. Circle your strategy for each: test, tree, or logic.

1) Is 221 prime? _____

2) Prime factors of 378 = _____

3) GCF(168, 252) = _____

4) LCM(42, 70) = _____

5) Next prime after 997 = _____

6) Is 2,047 prime? _____

7) Is 1,001 prime? _____

8) Write one twin prime pair above 100.

9) Write one Mersenne number that is composite.

10) Create your own prime puzzle for a partner.

Answer Key

Worksheet 1

1 P, 2 C, 3 P, 4 C, 5 P, 6 P, 7 C, 8 P, 9 C, 10 C

Worksheet 2

1) 2,3,5,10 2) 3 3) 3,5,9 4) 3,9,11 5) 2,5,10,11 6) 7,11 (11 by alternating sum test) 7)
2,3,5,9,10,11 8) 2,3,11

Worksheet 3

1) 25 primes 2) 53,59,61,67,71,73,79 3) open response based on process 4) because any larger factor pairs with one below \sqrt{n}

Worksheet 4

1) $2^2 \times 3 \times 7$ 2) $2 \times 3^2 \times 7$ 3) $2^2 \times 3^2 \times 5$ 4) $2^2 \times 3^2 \times 7$ 5) $2^4 \times 3^3$ 6) $3^2 \times 7 \times 11$
7) $3^3 \times 5 \times 7$ 8) $2^4 \times 3^2 \times 7$

Worksheet 5

1) 6 2) 15 3) 42 4) 48 5) 105 6) 128

Worksheet 6

1) 24 2) 36 3) 60 4) 84 5) 72 6) 180

Worksheet 7

1) 2 2) 6 3) 6 4) 8 5) 8 (in 2..100) 6) gaps between odd primes are even (except involving 2)

Worksheet 8

1 True 2 True 3 False 4 True 5 True 6 False

Worksheet 9

1) 30 2) 99 3) 84 4) 15

Worksheet 10

1) $221 = 13 \times 17$ (composite) 2) $2 \times 3^3 \times 7$ 3) 84 4) 210 5) 1009 6) $2,047 = 23 \times 89$ (composite) 7) $1,001 = 7 \times 11 \times 13$ 8) example: 101 and 103 9) example: $2^{11} - 1 = 2047$
10) open response

Pilot usage note: You can print and reuse this kit in one classroom or one household.
Please do not redistribute publicly.